Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering
نویسندگان
چکیده
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces "sensu stricto" species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
منابع مشابه
The Quantitative Genetics of Phenotypic Robustness
Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species...
متن کاملSilencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA.
Adaptive changes in nature occur by a variety of mechanisms, and Drosophila chromosomal inversions was one of the first studied examples. However, the precise genetic causes of the adaptive value of inversions remain uncertain. Here we investigate the impact of the widespread inversion 2j of Drosophila buzzatii on the expression of the CG13617 gene, whose coding region is located only 12 bp awa...
متن کاملImpact of Chromosomal Inversions on the Yeast DAL Cluster
Chromosomal rearrangements occur readily in nature and are a major reshaping force during genome evolution. Such large scale modifications are usually deleterious causing several fitness defects, but sometimes can confer an advantage and become adaptive. For example the DAL metabolic cluster in yeast was assembled in recent evolutionary times in the Hemiascomycetes lineage, through a set of rea...
متن کاملThe Effect of Common Inversion Polymorphisms In(2L)t and In(3R)Mo on Patterns of Transcriptional Variation in Drosophila melanogaster
Chromosomal inversions are a ubiquitous feature of genetic variation. Theoretical models describe several mechanisms by which inversions can drive adaptation and be maintained as polymorphisms. While inversions have been shown previously to be under selection, or contain genetic variation under selection, the specific phenotypic consequences of inversions leading to their maintenance remain unc...
متن کاملAdaptation through chromosomal inversions in Anopheles
Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species-human malaria vectors-is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequenc...
متن کامل